Surface-modified nanoparticles for ultrathin coatings
نویسندگان
چکیده
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Tiina Nypelö Name of the doctoral dissertation Surface-modified nanoparticles for ultrathin coatings Publisher Aalto University School of Chemical Technology Unit Department of Forest Products Technology Series Aalto University publication series DOCTORAL DISSERTATIONS 12/2012 Field of research Forest Products Chemistry Manuscript submitted 18 October 2011 Manuscript revised 17 January 2012 Date of the defence 17 February 2012 Language English Monograph Article dissertation (summary + original articles) Abstract Nanoparticle modification and their utilization in the modification of planar substrates were examined. Emphasis was placed on two topics: the control of layer structure during formation and the alteration of the wetting characteristics of modified surfaces. Layer formation was investigated by adsorbing nanoparticles with a distinct shape and charge onto a nanofibrillated cellulose (NFC) substrate. In addition, nanosized silica particles and NFC were adsorbed sequentially with an oppositely charged polyelectrolyte onto an NFC substrate in order to explore the structures achievable using layer-by-layer assembly. Evidently, the utilization of nanoparticles in layer formation demands the control of the nanoparticle dispersion stability and particle affinity to the substrate. When combining nanoparticles with other substances, the properties of the particles define the layer structure; large fibrils were able to form a stratified layer, while silica nanoparticles were able to penetrate the preceding layer and transform the structure into a uniform network of polyelectrolyte and nanoparticles. The effect of nanoparticle surface modification on dispersion properties and on the structure and properties of the layers formed were also of interest. Modification of nanosized silica and precipitated calcium carbonate particles was conducted by treatment with oppositely charged substances. This treatment resulted in stable nanoparticle dispersions able to be further modified with hydrophobic sizing agents. In addition to enhanced stability and functionality, the polyelectrolyte treatment could be used to affect the interaction of the nanoparticles with the other dispersion constituents. Wetting of a smooth and dense substrate was not affected by the nanoscale roughness caused by the nanoparticle coating on the substrate. In order to affect substrate hydrophobicity, chemical hydrophobicity was deemed necessary. The combination of modified nanoparticles and a hydrophobic emulsion resulted in a nanostructure able to change the wetting characteristics of a planar substrate. Treatment of a smooth substrate with a hydrophobic dispersion resulted in slightly enhanced surface hydrophobicity. On paper, the combination of micron and nanoscale roughness with chemical hydrophobicity resulted in a significant increase in hydrophobicity. The coatings consisted of a thin nanoparticle structure with evenly distributed particles. In addition to use as a paper surface treatment, a layer, consisting of inexpensive particles allowing simple surface modification, could be used to functionalize planar substrates and enable the use of paper as a sustainable substrate, even in applications beyond its traditional use.Nanoparticle modification and their utilization in the modification of planar substrates were examined. Emphasis was placed on two topics: the control of layer structure during formation and the alteration of the wetting characteristics of modified surfaces. Layer formation was investigated by adsorbing nanoparticles with a distinct shape and charge onto a nanofibrillated cellulose (NFC) substrate. In addition, nanosized silica particles and NFC were adsorbed sequentially with an oppositely charged polyelectrolyte onto an NFC substrate in order to explore the structures achievable using layer-by-layer assembly. Evidently, the utilization of nanoparticles in layer formation demands the control of the nanoparticle dispersion stability and particle affinity to the substrate. When combining nanoparticles with other substances, the properties of the particles define the layer structure; large fibrils were able to form a stratified layer, while silica nanoparticles were able to penetrate the preceding layer and transform the structure into a uniform network of polyelectrolyte and nanoparticles. The effect of nanoparticle surface modification on dispersion properties and on the structure and properties of the layers formed were also of interest. Modification of nanosized silica and precipitated calcium carbonate particles was conducted by treatment with oppositely charged substances. This treatment resulted in stable nanoparticle dispersions able to be further modified with hydrophobic sizing agents. In addition to enhanced stability and functionality, the polyelectrolyte treatment could be used to affect the interaction of the nanoparticles with the other dispersion constituents. Wetting of a smooth and dense substrate was not affected by the nanoscale roughness caused by the nanoparticle coating on the substrate. In order to affect substrate hydrophobicity, chemical hydrophobicity was deemed necessary. The combination of modified nanoparticles and a hydrophobic emulsion resulted in a nanostructure able to change the wetting characteristics of a planar substrate. Treatment of a smooth substrate with a hydrophobic dispersion resulted in slightly enhanced surface hydrophobicity. On paper, the combination of micron and nanoscale roughness with chemical hydrophobicity resulted in a significant increase in hydrophobicity. The coatings consisted of a thin nanoparticle structure with evenly distributed particles. In addition to use as a paper surface treatment, a layer, consisting of inexpensive particles allowing simple surface modification, could be used to functionalize planar substrates and enable the use of paper as a sustainable substrate, even in applications beyond its traditional use.
منابع مشابه
Interfacial behaviour of cubic silsesquioxane and silica nanoparticles in Langmuir and Langmuir–Blodgett films
In recent years fluorinated polyhedral oligomeric silsesquioxanes (POSS) have been established as useful for the fabrication of superhydrophobic surfaces, however little attention has been paid to their use for making ultrathin coatings by the Langmuir–Blodgett method. On the other hand, recently POSS compounds have been recognized as a new group of film-forming materials. In this study the int...
متن کاملAdsorption and Photocatalytic Properties of Surface-Modified TiO2 nanoparticles for Methyl Orange Removal from Aqueous Solutions
Titanium dioxide nanoparticles surface-modified by 5-sulfosalicylic acid 5-SA-TiO2 were prepared in ethanol by the chemisorption process. The effects of surface improvement on the photocatalytic degradation and adsorption of methyl orange MO were studied in a batch system by considering the various parameters, such as contact time, adsorbent dosage, pH, initial dye concentration and temperature...
متن کاملSurface Modified Cobalt Ferrite Nanoparticles with Cationic Surfactant: Synthesis, Multicomponent Dye Removal Modeling and Selectivity Analysis
Herein, magnetic cobalt ferrite nanoparticles (CFNPs) was synthesized and its surface was modified by cationic surfactant (cetyltrimethyl ammonium bromide: CTAB) and its potential to selective removal of dye from multicomponent (ternary) system was investigated. Direct red 31 (DR31), Direct green 6 (DG6) and Direct red 23 (DR23) were used as a model dyes. The characteristics of the synthesi...
متن کاملEffects of Surface Chemistry Modification using Zwitterionic Coatings on the Surface of Silica Nanoparticles on Prevention of Protein Corona: A Test Study
Objective(s): The purpose of this study was investigation of the protein corona formation on the surface of zwitterionic nanoparticles when they exposed to bio-fluid like human plasma.Methods: Silica nanoparticles with zwitterionic surface coating, cysteine and sulfobetaine were employed as zwitterionic ligands, were synthesized and characterized in terms of physicochemical properties. To...
متن کاملExperimental study on thermal conductivity of polyurethane resin filled with modified nanoparticles
One of the ways to waste energy in buildings is wasting it from the walls. For this reason, insulating materials are used to prevent the loss of energy in buildings. Typically, common insulations are high thickness and thin coatings are used less. The purpose of this research is to introduce nanocomposite thin polymer coatings and its effect on thermal conductivity. For achieving this, chemical...
متن کامل